Graded Bundles in the Category of Lie Groupoids
نویسندگان
چکیده
We define and make initial study of Lie groupoids equipped with a compatible homogeneity (or graded bundle) structure, such objects we will refer to as weighted Lie groupoids. One can think of weighted Lie groupoids as graded manifolds in the category of Lie groupoids. This is a very rich geometrical theory with numerous natural examples. Note that VB-groupoids, extensively studied in the recent literature, form just the particular case of weighted Lie groupoids of degree one. We examine the Lie theory related to weighted groupoids and weighted Lie algebroids, objects defined in a previous publication of the authors, which are graded manifolds in the category of Lie algebroids, showing that they are naturally related via differentiation and integration. In this work we also make an initial study of weighted Poisson–Lie groupoids and weighted Lie bi-algebroids, as well as weighted Courant algebroids.
منابع مشابه
Twisted Equivariant K-theory, Groupoids and Proper Actions
In this paper we define twisted equivariantK-theory for actions of Lie groupoids. For a Bredon-compatible Lie groupoid G, this defines a periodic cohomology theory on the category of finite G-CW-complexes with G-stable projective bundles. A classification of these bundles is shown. We also obtain a completion theorem and apply these results to proper actions of groups.
متن کاملArithmetic Deformation Theory of Lie Algebras
This paper is devoted to deformation theory of graded Lie algebras over Z or Zl with finite dimensional graded pieces. Such deformation problems naturally appear in number theory. In the first part of the paper, we use Schlessinger criteria for functors on Artinian local rings in order to obtain universal deformation rings for deformations of graded Lie algebras and their graded representations...
متن کاملConnections, Local Subgroupoids, and a Holonomy Lie Groupoid of a Line Bundle Gerbe
Our main aim is to associate a holonomy Lie groupoid to the connective structure of an abelian gerbe. The construction has analogies with a procedure for the holonomy Lie groupoid of a foliation, in using a locally Lie groupoid and a globalisation procedure. We show that path connections and 2–holonomy on line bundles may be formulated using the notion of a connection pair on a double category,...
متن کاملar X iv : 0 90 2 . 29 25 v 1 [ m at h . G T ] 1 7 Fe b 20 09 COVERINGS AND ACTIONS OF STRUCTURED LIE GROUPOIDS
In this work we deal with coverings and actions of Lie groupgroupoids being a sort of the structured Lie groupoids. Firstly, we define an action of a Lie group-groupoid on some Lie group and the smooth coverings of Lie group-groupoids. Later, we show the equivalence of the category of smooth actions of Lie group-groupoids on Lie groups and the category of smooth coverings of Lie group-groupoids.
متن کاملGroupoid Representations and Modules over the Convolution Algebras
The classical Serre-Swan’s theorem defines a bijective correspondence between vector bundles and finitely generated projective modules over the algebra of continuous functions on some compact Hausdorff topological space. We extend these results to obtain a correspondence between the category of representations of an étale Lie groupoid and the category of modules over its convolution algebra tha...
متن کامل